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Al~traet--Analysis of creeping flow over an array of freely-rotating cylinders sandwiched between 
two sliding parallel plates is studied using a finite-difference and a least-squares numerical 
technique. The flow pattern was found to be very much influenced by the cylinder-to-cylinder 
spacing and by the gap width of the parallel plates. The shear stress on the cylinder surface and 
on the parallel plates was found to be a strong function of position. The viscosity of a suspension 
composed of an array of freely-rotating cylinders was deduced from the applied shear rate and the 
evaluated shear stress on the parallel plates. Experimental results confirm the numerical findings. 

I N T R O D U C T I O N  

Suspensions of particles can exhibit ordered structures, especially in the case of mono- 
disperse particles at sufficiently high volume fractions. The best-known example is 
probably an aqueous suspension of tobacco virus particles which, with increasing volume 

fraction, changes from isotropic to birefringent and finally into an iridescent gel (Oster 
1950; Forsyth et al. 1978). These phenomena clearly show that the tobacco mosaic virus 
particles align themselves at higher volume fractions. The same phenomena occur with 
suspensions of spherical particles, which usually settle into a hexagonally-packed layer 
structure (Hiltner et al. 1971; Tomita et al. 1983). The phase transitions of disordered to 
ordered structures have been explained theoretically (Onsager 1949; Alder et al. 1968). 

It is of interest to consider what happens when such ordered structures are subjected 
to shear. It has been shown (Hoffman 1974) that sheared ordered suspensions of spheres 
consist of a stack of layers that slide over each other. Recently (Tomita & van de Ven 
1984), it has been found that the distance between these sliding layers depends on the rate 
of shear, the distance being larger at higher shear rates. This implies that ordered 
suspensions of spheres restructure themselves when subjected to shear; they settle in fewer 
more densely packed layers with increasing shear. Similar phenomena can be expected for 
suspensions of anisometric particles (van de Ven 1985). 

A precise description of the flow around particles in sheared ordered suspensions is 
extremely complicated. Such studies were made by Zuzovsky et al. (1983), Adler & Brenner 
(1985) and Adler et al. (1985). A useful simplification that can be made is to consider only 
one layer of particles that is being sheared between two solid plates. The behavior of 
particles in such a layer can be expected to be qualitatively similar to that of a layer in 
an ordered suspension, except that the nonsteady periodic character of the flow is replaced 
by an averaged steady flow. 

In this paper we consider the simplest case, namely the flow around an array of aligned 
infinitely long cylinders subjected to shear. We believe the results will be relevant to the 
flow of ordered suspensions of rods. In the following sections we describe the governing 
equations, methods for solving them, results of numerical calculations and, finally, the 
results of experiments that confirm certain aspects of the theory. 
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Figure 1. Flow geometry. 

G O V E R N I N G  EQUATIONS 

Creeping flow of a Newtonian fluid over an array of circular cylinders sandwiched 
between two parallel plates moving in opposite directions is governed by 

v 'v ,  = 0, [ l ]  

where ~b is the dimensionless stream function and 

~2 1 c~ l ~2 
V 2 = ~ + - + -- - -  [2] 

r dr r 2 &~2" 

Here r is the distance from the center of a reference cylinder, normalized by the cylinder 
radius R and @ is the polar angle (see figure 1). The biharmonic flow equation [l] can be 
written as 

and 

V2@ = ( [3a] 

VEC = 0, [3b] 

where ( is the flow vorticity. Using the cylinder radius as the characteristic length and a 
suitable angular velocity O* as the characteristic reciprocal time, the following quantities 
were rendered dimensionless: 

= ~'/R2Q *, ( = ('/•*, L = L'/R, D = D'/R and Vp = V'p/O*R, [4] 

where 2D is the dimensionless cylinder center-to-center distance and 2L is the dimen- 
sionless separation distance between the parallel plates. Vp is the dimensionless velocity of 
the moving plates; because in the absence of cylinders V~ = GL', G being the rate of shear, 
one can identify f]* by G. 
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Figure 2. Flow cell and boundary conditions, 
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The flow cell representing the flow is shown in figure 2. Analogous to the flow past a 
periodic array of cylinders (Sangani & Acrivos 1982), due to the symmetry of the flow, 
only the flow region BCDEF need be considered. The plates' velocity Vp was restricted 
to a value L. This means that in the absence of the cylinders, the velocity field between 
the parallel plates is given by a simple shear flow, namely v., = y. Due to the linearity of 
the flow, setting Vp = L does not reduce the generality of the flow problem. 

The appropriate boundary conditions are given as: 

a¢ 02¢ fl " 
. . . . .  ; [Sa] o n B F  ¢ = 0 ,  c3x - f l  or ~=c~r 2 r 

o n B C  ~ y = 0 ,  ~ = 0  or ~ y = 0 ;  [5b] 

a~ 
on DC c~¢ a3¢ = 0 or = 0; [5c] 

~x =° '  ~x --~ ~x 

on DE ~9¢ c9¢ c'~2¢. [5d] - ~ y = - L ,  ~ x = O  or ~ = d y  2, 

and 

on EF 0¢ c33¢ c~ c3--x = 0, ~ = 0 or ~x = 0. [5el 

Since the cylinders are free to rotate, their angular velocity D(=fV/fl*) is determined by 
the condition of zero hydrodynamic couples acting on them, i.e. 

fo '< d'a2¢ 1 a¢ 1 02¢). ,  r~-r~ t a r  r2~-~ o f = 0 .  [6] 

The stream function derivatives are related to the velocity: 

a¢ a¢ l a~ 
V x ~ V y  ~ V r = ~y' ~x'  r Odp 

and 

a¢ 
v+ = ~r " 

The velocities are rendered dimensionless by (fl*R). 
The shear stress, z,+, is given by 

i ' , + =  \ ar r + r 
[7] 

The shear stress is rendered dimensionless using ~,+ = z~+/p.oD*, where ~ is the fluid 
viscosity. At the cylinder surface, the shear stress and the vorticity at the surface are given 
by 

and 

respectively. Equations [8a,b] lead to 

~,+ = ~ -i- D [8a] 

= ~ -  fl, [8b] 

~,+ --  % = ~ + 2 f l  [9] 
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where tc is local shear stress at the cylinder surface. Along the moving plates, the plate 
local shear stress, %, is given by 

tp = ~- [10] 

The average shear stress, ( % ) ,  is given by 

( % )  --,~ %dx. [Ill 

As discussed above, one can think of the flow system, where a single row of cylinders 
is sheared by two parallel plates, as being a simplified case of a suspension or ordered 
cylinders undergoing simple shear. To this end, it is possible then, to relate the suspension 
viscosity #s by 

#~ = ( tp ) [12] 
P-0 

where, in the absence of the cylinders, the average shear stress on the plate is unity. 
Equation [12] becomes useful in assessing the value of the viscosity ratio/A/~ for different 
geometries, i.e. cylinder spacing, parallel-plate gap width and concentration. 

METHODS OF SOLUTION 

Two methods of solution were attempted: a finite-difference method and a least-squares 
technique. Both solution methods are complimentary to each other and they served as a 
check to the accuracy of the results. 

In the finite-difference method, [3a,b] was solved. The surface vorticity was approxi- 
mated using a Taylor series expansion up to and including the third derivative of ~k in a 
manner similar to Masliyah & Epstein (1970). A rectangular grid mesh was used with 
interpolation at the cylinder surface. The interpolation scheme was an adaptation of that 
given by Gordon (1978). A Gauss-Seidel point iterative scheme was used to solve the 
discretized form of [3a,b] for a given value of fl at the cylinder surface. Once a converged 
solution was obtained, the integral of [6] was evaluated using a cubic spline. The value of 
f~ was readjusted till the converged solution of [6] gave a torque value of < 10 -2. 

In the method of least squares, use is made of the general solution of [1]. The general 
solution that satisfies the boundary conditions along BC and EF is given by 

oo 

¢/ =f0 + ~ f ,  cos 2n~b, [131 
I 

where 

and 

fo = A r21nr -t- Br2-t - C l n r  + D [14] 

f .  = a.  r~+ 2 + b.  r2" + Cn r-2n+ 2 q- d . r  -2" [15] 

In order to satisfy the zero torque condition given by [6] and ~O = 0 at the cylinder surface, 
it can be shown that 

f~ fl 
A = C = 0 ,  B = - - ~  and D = - ~ .  [16] 

Making use of the boundary conditions along FB leads to 

c, = - (2n + l)  a,  - 2nb,  [ 17a] 

and 

at. = 2na.  + (2n -- l) b.. [ 17b] 
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Combining [15]-[17b] with [13] leads to 

N 

¢ = - ½ n ( r  2 - 1) + ~ {an[r z'+: - (2n + 1)r-Z'+2 + 2nr-~]  
I 

+ b~[r 2 " -  2nr-Z~+2+(2n - 1)r-2"]}cos2n$. [18] 

Equation [18] satisfies all the boundary conditions, except those along ED and DC. The 
coefficients a, and bn together with fl  are to be determined in such a manner as to satisfy 
the boundary conditions along ED and DC in a "least-square average" sense (Sangani & 
Acrivos 1982). This is accomplished by choosing M points (M > N) along ED and DC. 
At each point two boundary conditions are to be satisfied. Therefore, 2M equations are 
generated with 2N + 1 unknowns. This overdetermined set of equations is reduced to a 
system of 2N + 1 equations with 2N + 1 unknowns using the method of least squares, 
which is described by Lapidus (1962) and Forsythe et al. (1977). Once the unknowns, fl, 
a, and bn are determined, it is then possible to evaluate the velocity field and the surface 
shear stress via the surface vorticity. 

In general it was found that by choosing M = 45 and N = 35, the value of fl becomes 
insensitive (within 10 -4) to higher values of  M and N. In all cases, the matrix condition 
was used as a guide to determine the optimal value of M and N. The maximum deviation 
in the value of f~ between the least-squares method and the finite-difference method was 
about 4%. 

L I M I T I N G  SOLUTIONS 

In the case of a single cylinder in a shear flow, i.e. L and D ~ oo, Cox et al. (1968) showed 
tha t  the solution is given by setting N = 1 in the general solution given by [18]. Their 
stream function ~k is given by 

- ; (r  - 1) + (r 2 - 2 + r - 2 ) c o s  2~b [19] 

and 

fl  = ~. [20] 

The shear stress at the cylinder surface is then given by 

t , ,  = 2 cos 2~b. [21] 

The solution of Cox et al. (1968) gives the upper limit of the angular velocity of a cylinder 
placed in a simple shear flow. This limit is given by [20]. 

For the case of a small gap between a single cylinder rotating with an angular velocity 
t~ near a wall moving with a velocity Vp, analysis using lubrication theory can be shown 
to give 

Q - ~A(G + Vp) [221 

and 

¢1 = lip x / ~ ,  [23] 

where A is the dimensionless gap between the cylinder surface and the plate and Q is the 
dimensionless flow rate between the cylinder and the moving plate (Q = Q' /R f I* ) .  In this 
analysis Vp is restricted to a value of L. In the limit of a small gap, A --} 0, L - ,  1 and [22] 
and [23] show that both Q and fl  approach zero when the cylinder touches the plate. The 
limiting cases of an isolated cylinder in a simple shear flow and that of  a cylinder near 
a moving plate serve as a check to the numerical analysis, which in turn can be used to 
establish the limits of their validity. 
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D I S C U S S I O N  O F  R E S U L T S  

It was pointed out earlier that two methods of solution were employed. The 
finite-difference method was capable of handling all values of L/D, albeit, that the 
computational demand was fairly high. The computational demand of the least-squares 
method was much less; however it suffered from producing a matrix having a high 
condition number which could cast some doubt on the numerical accuracy of the results 
(Forsythe et al. 1977). This was especially the case for either an L/D-value higher than 
3 or lower than 1/3. In all cases tested, the results from both methods of solution were 
normally within 1-2% and at worst 4% from each other. The grid size for the 
finite-difference method varied from 0.01 to 0.1. 

Figure 3a-f  show the contours of the stream function at a fixed L-value of 1.3 for 
different D-values. At a large value of  D ( =  3), figure 3a shows a critical closed streamline 

a' 1 
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3.0 

1.9 

1.3 
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1.3 

125 1,15 

Figures 3a-f. Con tou r s  of  the s t ream function for L = 1.3: (a) L/D = 0.433; (b) L/D = 0.684; 
(c) L/D= 0.812; (d) L/D = 1.00; (e) L/D = 1.04; (f) L/D = 1.13. 
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Figures 4a-d .  Exper imental  flow pat te rns  for L ' =  1.315: (a) L/D =0.68;  (b) L/D=0.80; 
(c) L/D = 0.99; (d) L/D = 1.02. 
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ala2a~. Any fluid between the cylinder and the streamline a~a2a~ circulates around the 
cylinder and remains entrapped. Similarly, streamline a2a3a~a~ bounds the fluid that 
circulates within the central core. For clarity let this vortex be denoted by A. The fluid 
between the moving plate and streamline a,a:a3 is free to move from one cell to another. 
On reducing the cylinder center-to-center distance to D = 1.9 (figure 3b), a new vortex 
close to the cylinder emerges. Let this vortex be denoted by B. Its circulation direction is 
opposite to the central core vortex, A. The critical streamline a~a2 remains nearly 
unchanged. On further decreasing D, figure 3c shows that vortex B grows at the expense 
of vortex A. On further reduction in D, from 1.6 to 1.3, figure 3d shows that vortex A 
disappears and vortex B occupies the central core. Decreasing D from 1.3 to 1.25, figure 
3e shows that vortex B becomes smaller and splits up into two vortices away from the 
centerline of the plates. Finally, on further reducing D to 1.15, figure 3f, vortex B 
disappears and point a: of the critical streamline reaches the center of the flow cell. 

It will be mentioned at a later stage that flow visualization experiments were conducted. 
Figures 4a--d show the streamlines from these flow visualization experiments. Clearly 
figures 4a--d correspond to figure 3b-e, respectively. It is clear from figures 3a-f  and 4a--d 
that the effect of the cylinder center-to-center distance has a profound influence on the flow 
pattern. 

The effect of the plate spacing on the flow field at a fixed value of  D = 3 is shown in 
figures 5a-e. For a small plate spacing, L = 1.1, a vortex was found near the cylinder 
similar to the case o f L  = 1.3 and D = 1.9 of figure 3b. Also a central core vortex is present. 
On increasing the plates spacing the vortex close to the cylinder disappears. With the 
increase of  the plates spacing, the central core vortex becomes smaller until it completely 
disappears, as shown in figure 5e for the case of  L = 4. The critical streamline a~ as occupies 
a large region of  the flow field. 
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Figures 5a-e. Contours of  the stream function for D = 3. 

The variation of  the angular velocity of  the cylinder with the ratio of  plate spacing to 
cylinder center-to-center distance, L/D  is shown in figure 6 for various values of  LD. The 
product  LD can be thought of  as being a measure of  the concentration of  the cylinders, 
where the cylinder concentration is given by 

R 2 

4 zt 
c L ' D '  4LD" 

At large values of  LD the system is considered to be dilute. For  LD = 50 and L/D  close 
to unity, the value of  f~ is close to 0.5, which is the theoretical value as LD --, oo, as given 
by Cox et al. (1968). For  a given value of  LD, the value of  f~ becomes zero in the limiting 
case of  D --, 1 and L ---, 1. In the limit of  D = 1, the cylinders touch each other and hence 
are prevented from rotating. This limiting case does not represent any conceptual 
difficulties. In the case of  L --* 1, the moving plates touch the cylinders, whereby the cylinder 
comes into contact with the moving plates but it does not rotate. In real systems this cannot 
be true as other phenomena become important as the gap A ( = L -  1) between the 
cylinders and the plates becomes small. For  example, cavitation occurs when the gap width 
is very small and the effects of surface roughness also become important. 



THE FLOW OF ORDERED SUSPENSIONS OF RODS 799 

D. 

O.5 

O.4 

0.3 

0.2 

0.1 

0 
O0 

k ~ r ¢ l !  Anltysm 
Lubcicgtlon lheor y 

Lt ~,.~ ~ [ Extr.pot.t,on 

D 
LO:50 

• ,/ , :' ' ! ', 

02 04 o~ 08 1o 12 ,4 i~ 18 20 22 24 

LID 

Figure 6. Variation of the cylinder angular velocity with L/D. 

For the case of large LD and small gap, A, it is possible to analyze the present flow using 
lubrication theory. Using classical lubrication theory (Langlois 1964), one can show that 
for an isolated cylinder near a moving wall, the cylinder angular velocity is given by [23] 
and the flow rate between the moving plate and the cylinder is given by [22]. Comparison 
between [22] and [23] with the numerical results of this study is shown in table 1. For low 
values of  the gap width, A, the agreement between the lubrication theory and the numerical 
results is remarkably good. 

The variation of the velocity in the x2direction, vx, is shown in figures 7 and 8 for two 
different geometries. For the case of  L = 1.9 and D = 2, the velocity, vx, variation along 
x = 0 and x = 2 is monotonic, as is shown in figure 7. Along x = 0 at y = 1.9, the value 
of the velocity is that of the moving plate and at y = 1 it is given by the value of fl. Along 
x --- 1.9 the velocity deviates appreciably from the straight line v~ = y which is the velocity 
variation for the case of D --, oo. For the case o f L  = 1.3 and D = 3, the velocity, vx, profile 
is shown in figure 8. An important feature in the v:variation along x = 0 is that dvx/dy 
changes sign close to the moving plate. In other words, the fluid velocity, vx, is not 
maximum at the moving plate itself. This, of course, leads to positive and negative local 
shear stresses along the moving plate for x --- 0.0. This will be shown to be the case. Along 
x = 3, the variation of v~ is nearly that of v~ = y, showing little effect due to the presence 
of the cylinders within the parallel plates. 

The variation of the shear stress, %, along the plate is given in figures 9 and 10. For 
L = 1.3, figure 9 shows the plate shear stress variation for different values of D. For large 
cylinder center-to-center distance, D = 3, the plate shear stress near x = 0 is negative, 
reaches a maximum at about x = 0.85, and then levels off to a value of unity for x > 4. 
The negative shear stress near x = 0 is due to the shape of  the v:profiles, where the velocity 
v~ is maximum away from the plate. In the absence of  the cylinders, the shear stress is 
uniform and is equal to unity. The approach of ~p to unity for x > 4 indicates that at the 
outflow boundary, x = 5, the flow is not influenced by the presence of the cylinders. For 

Table I. Comparison between various numerical methods and asymptotic solution 

ca Q 

A Vp = L [23]  FDM" LSM" [221 FDM LSM 

1.0 2 0.900 0.435 0.430 1.93 1.41 1.46 
!.0 1.3 0.320 0.262 0.273 0.343 0.303 0.306 
0.15 1.15 0.200 0.191 0.197 0.138 0.133 0.133 
0.1 I.I0 0.157 0.153 0.158 0.0838 0.083 0.083 

"FDM = finite-difference method, LSM = least-squares method. 
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Figure 7. Fluid velocity variation in the x-direction 
f o r L = l . 9 a n d D = 2 .  
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Figure 8. Fluid velocity variation in the x-direction 
f o r L = l . 3  a n d D = 3 .  

the cases of  D = 2 and D = 3, the shear stress variation with x is identical to the case of  
D = 5 when x approaches the outflow region of  the cell. However, for D = 1.3 and 
D = 1.15 it is positive for all x-values. 

The shear stress variation along the plate at D = 3 for various values of  L is shown in 
figure 10. For  low values of  L, there is a large variation of  % along the plate. The location 
of  the maximum value of  Tp shifts towards the cell outflow region as L is increased. 

The variation of  the shear stress, re, at the cylinder surface is shown in figure 11. In the 
limit of  large L and D, the expression by Cox et al. (1968) for the stream function can 
be used to evaluate the value of  rc which is given by 

zo = 2 cos 2~b. 

The deviation from the above expression is most pronounced when L is small. For  the case 
of  L = 2.5 and D = 3.0, the at-variation is shown to be fairly close to the expression of  
Cox et al. (1968). 

It was pointed out earlier that the flow system of  a row of  cylinders sheared between 
two parallel plates represents an idealized suspension of  cylinders. The viscosity ratio # , / ~  
represents the effect of  the presence of  the cylinders in the shear flow and its values can 

| I r r [ 

5[---- ~ - I : ) , t l s  t 

N 

~. I I I 

I 1 I i 
1 2 3 4 
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Figure 9. Variat ion o f  the plate shear stress for L = 1.3. 
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Figure 10. Variation of the plate shear stress for D = 3. Figure I 1. Variation of the cylinder shear stress. 

be evaluated using [10]-[13]. Figure 12 shows the variation of g//a0 with L/D for various 
LD-values. For large LD-values, i.e. low suspension concentration, g / ~  is little affected 
by the LID ratio. However, for low values of LD, i.e. at high suspension concentration, 
the dependence of #s/~ on L/D becomes very significant with p , /~  increasing with a 
decrease in L/D. This means that for a given suspension concentration, the viscosity ratio 
p~/~ is lower when the cylinders are stacked close to each other (i.e. small D and large 
L). This is in qualitative agreement with observations on sheared suspensions of ordered 
lattices (Tomita & van de Ven 1984) which show an increase in spacing (i.e. in L) between 
the sliding layers and an increase of the number of particles in each layer (i.e. a decrease 
in D). However, in such systems the flow behavior is complicated by the presence of 
diffusive ionic double layers around the particles. 
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Figure 12. Viscosity ratio variat ion with L/D. 
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E X P E R I M E N T A L  S E T U P  A N D  P R O C E D U R E  

The experimental study was aimed towards flow visualization and measurements of the 
angular velocity of the cylinders. The experimental investigation was carried out using a 
Couette device. It consisted of two accurately machined concentric counter-rotating 
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Table 2. Characteristics of the experimental setup 

Inner cylinder radius 12.63 cm 
Outer cylinder radius 15.30 c m  
Couette gap 2.63 crn 
Depth of Couette cylinder 14 cm 
Test cylinder radius 1.00 cm 
Test cylinder length 7.50 cm 
Silicone oil viscosity 10 Pa s 

vertical lucite cylinders, each of which is driven by a continuously variable-speed motor 
whose speed can be controlled to 0.2% or better. A full description of the Couette device 
is given elsewhere (Darabaner et  al. 1967). Electronic frequency counters were used to 
monitor the rotational speed of the Couette cylinders. The inner and outer cylinders were 
to rotate at the same peripheral velocity in opposite directions. Silicone oil having a high 
viscosity was placed in the annulus of the Couette device and used as the working fluid. 
In the experimental study, the inner and outer surfaces of the concentric cylinders simulate 
the moving plates. 

Stern - -  

H o l d e r  (to nng) 

Rotating Shaft 

Bearing 

Test  Cylincler 

Figure 13. Rotating test cylinder. 
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To simulate the array of parallel cylinders, five cylinders were constructed. Each cylinder 
rotated freely about its axis. Figure 13 shows a typical cylinder with its rotating shaft and 
holder. The cylinders were attached via their holders to a common rigid ring that was 
placed at the centerline of the Couette annulus. The cylinder center-to-center distance was 
adjusted by moving the cylinder holder along the ring. The distance between each cylinder 
was measured using spacer blocks. Table 2 gives the dimensions of the Couette device and 
those of the cylinders. 

R i n g - . ~ / /  _ _  ~ ' ~ "  I . - - L ~  Ring Holder 

Ring H o l d e r - - ~  

Outer  Couelte 
Cyl inder  

! I ' l i l  h,,, III i r ~  Inner Couette 
I'" I I  I ,,, I i I cylinder 

Test 
Cyl inder  • 

Dye 

M i rror 

Figure 14. Experimental setup (schematic). The five test cylinders are connected to a ring with a 
diameter corresponding to the center of the gap between the Couette cylinders. The ring is held 
in place by a ring holder that, using several adjustable screws, allows precise positioning of the test 
cylinders into the annular gap. Streamlines were made visible by using a fluorescent dye placed 

between the two central tests cylinders and were photographed from below. 
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The five cylinders were placed in the Couette annulus to isolate the cylinder with the 
least rotational bearing friction. The velocity of the Couette cylinders was first set at a high 
value and it was gradually reduced. Four of the cylinders stopped rotating when the 
Couette cylinder peripheral speed was about V' = 0.4 cm/s, and the fifth cylinder stopped 
rotating at V' --- 0.1 cm/s. The fifth cylinder having the least bearing friction was used as 
the test cylinder and was placed in the center of the cylinder row. All measurements were 
made on the test cylinder and in the space adjacent to it. A schematic presentation of the 
experimental setup is shown in figure 14. 

E X P E R I M E N T A L  R E S U L T S  

Flow visualization was made using a red fluorescent dye. It was prepared by dissolving 
the dye in the working silicone oil and using the dye solution as the tracer in the flow 
visualization experiments. Intense cold light transmitted via a fiber optic was used for 
illumination. Due to the high viscosity of the silicone oil, the free surface of the oil gave 
a high surface distortion. As the bottom of the Couette apparatus was transparent, flow 
visualization was made from the bottom of the Couette apparatus. 

With the Couette cylinders stationary, the dye was introduced to the gap around the 
test cylinder using a long fine-stem disposable pipette. The Couette cylinders were then 
rotated at a velocity of 2.4 cm/s. Once a flow pattern was established, the Couette cylinders 
were stopped and the flow pattern generated by the dye was photographed. The flow 
patterns shown in figures 4a-d are in excellent qualitative agreement with the streamlines 
generated numerically. 

The variation of the cylinder angular velocity was measured for a fixed value of L which 
is imposed by the annulus width of the Couette cylinders. For a given value of the cylinder 
center-to-center distance and the Couette cylinders velocity, the angular velocity of the test 
cylinder was measured by recording the time taken for a line mark on the stem of the test 
cylinder to rotate a specified number of times. For a given cylinder center-to-center 
distance, the variation of the cylinder angular velocity was found to be proportional to 
the Couette cylinder velocity, as is shown in figure 15. This is quite reasonable as the test 
cylinder stopped rotating after a relatively small value of V~, indicating that the bearing 
friction is quite low. The value of [1 = (f2'/f]*) is given by SL'Rf2* where, in this case, 
R = l c m ,  t ) * = t s  -I and L ' = l . 3 1 5 c m .  The quantity S is the slope of Q'vsV'p. 
Comparison between the experimental and theoretical results for the cylinder angular 
velocity is shown in figure 16. The experimental results are for the case where the 
silicone-free surface is just below the test cylinder, a situation where the end effects are 
lowest. In general, good agreement was found between the experimental and theoretical 
angular velocities, especially for L/D > 1. At low values of L/D, the effect of curvature 
present in the Couette flow becomes more significant and more deviation would be 
expected between the flow within parallel flat plates and concentric cylinders. 
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Figure ! 5. Variation of  the cyfinder angular velocity 
with plate velocity. 

0.5 

0.4 

N 0.3 

0.2 

0.1 

o 
0.5 

r i I I T i t i L 

O E x pertrnent I t  (L,1.~5) 
- -  Numerical 

~ _ . ,  ~ - - ~ 0 ~  O 

\ 
\ 

[ [ I I I I [ [1 
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

LID 
1.4 
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with L/D at L = 1.315. 
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In order to gain an appreciation of the error in measurement due to end effects, 
measurements were made with the silicone-oil-free surface 2.5 cm below the upper end of 
the test cylinder. This represents one-third of the available length of the test cylinder. 
Measurements in f~ were affected by about + 3%, indicating that the end effects were not 
very significant. 

During our experiment we observed another interesting phenomenon. In previous 
experiments with the Couette apparatus, we usually had a layer of glycerol on the bottom 
of the apparatus in order to minimize the effects of the bottom plate on the velocity profile 
in the gap between the two cylinders. In the experiments described in this paper, this layer 
was absent but it was present in preliminary experiments. We observed some very 
spectacular three-dimensional fluid motion in which the glycerol moved upwards, some- 
times up to half the height of the cylinders, in a complex but reproducible fashion. This 
shows that introducing a new phase greatly complicates the fluid motion. 

CONCLUDING REMARKS 

It has been shown that even a rather simple system of an array of cylinders subjected 
to shear shows a surprisingly rich variety of flow patterns. This implies that the flow in 
sheared concentrated ordered suspensions must be quite complex. In this paper we have 
established the various flow patterns that can occur in a sheared array of aligned cylinders 
and calculated the shear stresses exerted on the boundaries and the cylinders. We also 
predicted the angular velocity of the cylinders as a function of volume fraction and spacing. 
Experiments on a row of five cylinders confirm the general features of the theory, especially 
the occurrence of the various flow patterns and the variation of angular velocity with 
spacing. 

The two-dimensional model of ordered suspensions of cylinders is a simple example of 
an ordered structure subjected to shear. It qualitatively explains some of the observations 
in ordered suspension that are subjected to shear such as restructuring in fewer more 
densely packed layers together with a reduction in viscosity (shear thinning behavior). 
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